Least-squares reverse-time migration toward "true" reflectivity

Zhang, H., Liu, Q., Hao, J.

Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Beijing, China
King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
Research Institute of Petroleum Exploration and Development, PetroChina, Qinghai, China

Abstract

Conventional least-squares reverse time migration (LSRTM) usually aims to improve the quality of seismic image, by removing the acquisition footprint, suppressing migration artifacts, and enhancing resolution. We find that the conventional reflectivity defined in the LSRTM is related to the normal-incidence reflection coefficient and the background velocity. Compared with the defined reflectivity, our inverted result is approximate. With reflected data, LSRTM is mainly sensitive to impedance perturbations. According to an approximate relationship between them, we reformulate the perturbation-related system into a pseudo reflection-coefficient related one. Then, we seek the inverted image through linearized iteration. With the assumption that the density varies gradually compared to the migration velocity, only the knowledge of the velocity is required, although the reflected waves are produced at impedance discontinuities. We validate our scheme using the 2D Marmousi synthetic dataset. © 2017 Geophysical Press Ltd.

Author keywords

Linear Inversion LSRTM Normal-incidence reflection coefficient
References

1) Beylkin, G., Oristaglio, M., Miller, D.
 SPATIAL RESOLUTION OF MIGRATION ALGORITHMS.

2) Claerbout, J.F.
 Earth soundings analysis

3) Clapp, M.L., Clapp, R.G., Biondi, B.L.
 Regularized least-squares inversion for 3-D subsalt imaging

4) Dai, W., Schuster, G.T.
 Plane-wave least-squares reverse-time migration
 DOI: 10.1190/GEO2012-0377.1

5) Dutta, G., Schuster, G.T.
 Attenuation compensation for least-squares reverse time migration using the viscoacoustic-wave equation
 DOI: 10.1190/GEO2013-0414.1
6) Guitton, A., Valenciano, A., Bevc, D., Claerbout, J.
 Smoothing imaging condition for shot-profile migration
 DOI: 10.1190/1.2712113

7) Huang, Y., Schuster, G.T.
 Multisource least-squares migration of marine streamer and land data with frequency-division encoding
 DOI: 10.1111/j.1365-2478.2012.01086.x

8) Kaplan, S.T., Routh, P.S., Sacchi, M.D.
 Derivation of forward and adjoint operators for least-squares shot-profile split-step migration
 DOI: 10.1190/1.3506146

9) Kuehl, H., Sacchi, M.
 Robust AVP estimation using least-squares wave-equation migration
 DOI: 10.1190/1.1817231

10) Mora, Peter
 NONLINEAR TWO-DIMENSIONAL ELASTIC INVERSION OF MULTIOFFSET SEISMIC DATA.
11) Mora, P.
Inversion = migration + tomography

12) Lailly, P.
The seismic inverse problem as a sequence of before stack migrations

13) Nemeth, T., Wu, C., Schuster, G.T.
Least-squares migration of incomplete reflection data

14) Plessix, R.-E.
A review of the adjoint-state method for computing the gradient of a functional with geophysical applications
DOI: 10.1111/j.1365-246X.2006.02978.x

15) Plessix, R.-E., Li, Y.
Waveform acoustic impedance inversion with spectral shaping
DOI: 10.1093/gji/ggt233

16) Schuster, G.T.
Least-squares cross-well migration
17) Tan, S., Huang, L.
 Least-squares reverse-time migration with a wavefield-separation imaging condition and updated source wavefields
 DOI: 10.1190/GEO2014-0020.1

18) Tang, Y.
 Wave-equation Hessian by phase encoding
 DOI: 10.1190/1.3059323

19) Kroode, F.T.
 A wave-equation-based Kirchhoff operator
 DOI: 10.1088/0266-5611/28/11/115013

20) Virieux, J.
 P- SV wave propagation in heterogeneous media: velocity- stress finite-difference method.

21) Virieux, J., Operto, S.
 An overview of full-waveform inversion in exploration geophysics
 DOI: 10.1190/1.3238367

22) Wang, J., Kuehl, H., Sacchi, M.D.
High-resolution wave-equation AVA imaging: Algorithm and tests with a data set from the Western Canadian Sedimentary Basin
DOI: 10.1190/1.2076748

23) Wang, J., Sacchi, M.D.
High-resolution wave-equation amplitude-variation-with-ray-parameter (AVP) imaging with sparseness constraints
DOI: 10.1190/1.2387139

24) Zhang, Y., Ratcliffe, A., Roberts, G., Duan, L.
Amplitude-preserving reverse time migration: From reflectivity to velocity and impedance inversion
DOI: 10.1190/GEO2013-0460.1

25) Zhang, Y., Duan, L., Xie, Y.
A stable and practical implementation of least-squares reverse time migration
DOI: 10.1190/GEO2013-0461.1