Seismic Inversion

Investigations in Geophysics Series No. 20

Gerard T. Schuster

Ian Jones, managing editor
Yonghe Sun, volume editor
Contents

About the Author .. xiii

Preface ... xv

Acknowledgments .. xvii

Notation Convention ... xix

Abbreviations ... xxi

Part I: Iterative Optimization Methods

Chapter 1: Introduction to Seismic Inversion ... 3
 1.1 Notation ... 3
 1.2 Inverse problem ... 4
 1.3 Types of seismic inversion ... 7
 1.4 Inverse crimes .. 8
 1.5 Summary ... 9
Appendix 1A: Basics of exploration seismology .. 9
 Seismic sources .. 10
 Nonzero-offset seismic experiment .. 11
 Reflection amplitudes ... 11
 Seismic processing ... 11
 Reflection imaging .. 12
 Key difficulty with migration images ... 12

Chapter 2: Introduction to Gradient Optimization .. 15
 2.1 Mathematical definitions .. 16
 2.2 Gradient optimization, Taylor series, and Newton’s method 17
 2.3 Geometric interpretation of the gradient and Hessian 18
 2.4 Eigenvalues of the Hessian determine shape of contours 19
 2.5 MATLAB examples of Newton’s method ... 19
 2.6 Summary ... 21
 2.7 Exercises .. 22
 2.8 Computational labs .. 22
Chapter 3: Steepest-Descent Method ... 23

3.1 Steepest-descent method .. 23
 3.1.1 Convergence rate .. 23
3.2 Step-length calculation .. 25
 3.2.1 Exact line search .. 25
 3.2.2 Inexact Newton method and inexact line search 25
 3.2.3 Numerical line search .. 26
 3.2.4 2D plane minimization .. 26
3.3 Steepest-descent method and linear systems of equations 27
 3.3.1 Regularized steepest descent ... 28
 3.3.2 MATLAB steepest-descent code ... 28
 3.3.3 Preconditioned steepest descent .. 28
3.4 Summary ... 29
3.5 Exercises ... 29
3.6 Computational labs .. 30
Appendix 3A: Levenberg-Marquardt regularization .. 30
Appendix 3B: Choosing a value for the regularization parameter 31

Chapter 4: Conjugate-Gradient and Quasi-Newton Methods 33

4.1 Conjugate-gradient method .. 33
 4.1.1 Conjugate-gradient algorithm ... 34
 4.1.2 Conjugate-gradient method and linear systems of equations 35
 4.1.3 MATLAB conjugate-gradient code .. 35
 4.1.4 Convergence rate ... 36
 4.1.5 Preconditioned and regularized conjugate gradients 37
4.2 Quasi-Newton methods .. 38
4.3 Nonlinear functionals ... 39
4.4 What really works? .. 40
4.5 Summary ... 40
4.6 Exercises ... 41
4.7 Computational labs ... 41
Appendix 4A: Successive line-minimization methods 41
 Successive-eigenvector and conjugate-direction methods 41

Part II: Traveltime Tomography

Chapter 5: Raypath Traveltime Tomography ... 45

5.1 Perturbed traveltime integral .. 45
5.2 Raypath traveltime tomography ... 46
 5.2.1 Normal equations ... 47
 5.2.2 Poorly conditioned equations and regularization 48
 5.2.3 Reweighted least squares ... 50
5.3 Iterative steepest-descent solution ... 51
5.4 Reflection tomography ... 53
5.5 Field-data example .. 54
5.6 Summary ... 56
5.7 Exercises ... 56
5.8 Computational labs ... 57
Appendix 5A: Eikonal equation derivation .. 57
Appendix 5B: l_p misfit gradient .. 59
Chapter 6: Traveltime Tomography: Assessing model accuracy 61

6.1 Introduction .. 61

6.2 Model covariance matrix ... 62
 6.2.1 Numerical estimation of the model covariance matrix 64

6.3 Model resolution matrix .. 65

6.4 Analytic model covariance matrices .. 66
 6.4.1 VSP transmission data ... 66
 6.4.2 VSP reflection data .. 67
 6.4.3 CMP reflection data ... 69
 6.4.4 Uncertainty principle .. 70

6.5 Null space of $L^T L$ for 2D velocity models .. 70

6.6 Projection-slice theorem: Traveltime tomography 72

6.7 Summary .. 75

6.8 Exercises .. 75

Appendix 6A: Null-space properties of $L^T L$... 76

Part III: Numerical Modeling

Chapter 7: Traveltime Calculation by Solution of the Eikonal Equation 81

7.1 Finite-difference solution of the eikonal equation ... 81

7.2 Summary .. 83

7.3 Exercises .. 83

Appendix 7A: Efficient sorting of traveltimes .. 83

Chapter 8: Numerical Solutions to the Wave Equation 85

8.1 Finite-difference method .. 85
 8.1.1 Finite-difference approximation to the wave equation 85
 8.1.2 Stability and accuracy analysis ... 87
 8.1.3 MATLAB code for FD solution of the acoustic wave equation 88

8.2 Pseudospectral solution of the wave equation .. 88
 8.2.1 MATLAB code for pseudospectral solution of the acoustic wave equation 89
 8.2.2 Stability and accuracy analysis ... 90

8.3 Spectral element solution of the wave equation 91

8.4 Staggered-grid FD solution of the wave equation 93
 8.4.1 Staggered-grid FD of the first-order acoustic equations 93
 8.4.2 Staggered-grid FD of the first-order elastodynamic equations 94
 8.4.3 MATLAB code for staggered-grid FD of the first-order elastic equations . 95

8.5 Modeling in the oil and gas industry .. 95

8.6 Summary .. 96

8.7 Exercises .. 96

8.8 Computational labs .. 97

Appendix 8A: Absorbing boundary conditions .. 97
 8A.1 Sponge zone .. 97
 8A.2 PDE absorbing boundary conditions 98
 8A.3 Hybrid PDE absorbing boundary conditions 100

Chapter 9: The Viscoacoustic Wave Equation ... 101

9.1 Introduction to linear viscoelasticity .. 101

9.2 Viscoacoustic wave equation .. 103

9.3 Summary .. 105
Part IV: Reflection Migration

Chapter 10: Forward and Adjoint Modeling Using Green’s Functions

10.1 Integral-equation forward modeling
- 10.1.1 Green’s functions
- 10.1.2 $(\nabla^2 \pm k^2)^{-1}$ by Green’s theorem
- 10.1.3 Lippmann-Schwinger solution
- 10.1.4 Neumann series solution
- 10.1.5 Born approximation
- 10.1.6 Matrix operator notation

10.2 Integral-equation adjoint modeling
- 10.2.1 Physical meaning of the migration equation

10.3 Summary

10.4 Exercises

10.5 Computational labs

Appendix 10A: Causal and acausal Green’s functions

Appendix 10B: Generalized Green’s theorem

Chapter 11: Reverse Time Migration

11.1 Introduction

11.2 General imaging algorithm
- 11.2.1 RTM = generalized diffraction-stack migration
- 11.2.2 Reverse time migration

11.3 Numerical examples of RTM

11.4 Practical implementation of RTM

11.5 Summary

11.6 Exercises

11.7 Computational labs

Appendix 11A: MATLAB RTM code

Chapter 12: Wavepaths

12.1 Travelt ime wavepaths
- 12.1.1 Computing travelt ime wavepaths

12.2 Pressure wavepaths
- 12.2.1 Computing pressure wavepaths

12.3 Summary

12.4 Exercises

Chapter 13: Generalized Diffraction-stack Migration and Filtering of Coherent Noise

Abstract

13.1 Introduction

13.2 Theory of Generalized Diffraction Migration

13.3 Directional Filtering the Generalized Diffraction-Stack Migration Kernel
- 13.3.1 Horizontal reflector model
- 13.3.2 Vertical reflector model

13.4 Anti-Aliasing Filtering the Generalized Diffraction-Stack Migration Kernel

13.5 Numerical Examples
Chapter 16: Viscoacoustic Least-Squares Migration .. 197

16.1 Theory of viscoacoustic least-squares migration .. 197
 16.1.1 Viscoacoustic Born modeling equations .. 197
 16.1.2 Viscoacoustic adjoint equations ... 198
 16.1.3 Viscoacoustic gradient ... 198
 16.1.4 Algorithm for Q LSRTM ... 199

16.2 Numerical results ... 200

16.3 Summary .. 200

16.4 Computational labs .. 201

Chapter 17: Least-Squares Migration Filtering .. 203

17.1 Least-squares migration filtering .. 203

17.2 Numerical results .. 204
 17.2.1 LSMF of PS and PP reflections for a Graben model 204
 17.2.2 LSMF of Valhall data .. 205

17.3 Problems with LSMF .. 206
 17.3.1 Encoded multisource LSMF ... 206

17.4 Summary .. 208

Chapter 18: Migration Deconvolution .. 211

18.1 Migration Green’s function .. 211

18.2 Approximations to $[L^\dagger L]^{-1}$... 212
 18.2.1 Hessian inverse by $\delta_{ij}/[L^\dagger L]_{ij}$.. 212
 18.2.2 Hessian inverse by a nonstationary matching filter 212
 18.2.3 Migration deconvolution ... 215

18.3 Iterative migration deconvolution .. 216

18.4 Numerical tests .. 216
 18.4.1 Point-scatterer model ... 216
 18.4.2 Meandering-stream model ... 216
 18.4.3 Converted-wave marine field data ... 218
 18.4.4 3D Alaska field data .. 218

18.5 Summary .. 218

18.6 Exercises .. 220

Appendix 18A: Numerical implementation of MD .. 220

Part VI: Waveform Inversion

Chapter 19: Acoustic Waveform Inversion and its Numerical Implementation 225

Example 19.0.1 Pseudolinear traveltime misfit function with quasimonotonic character 225
Example 19.0.2 Highly nonlinear waveform misfit function 225
Example 19.0.3 Mildly nonlinear waveform misfit function 226
Example 19.0.4 Finite-difference solution .. 227

19.1 Numerical implementation of waveform inversion .. 227

19.2 Expediting convergence ... 229
 19.2.1 Conjugate-gradient and quasi-Newton gradient methods 229
Contents

19.2.2 Starting model ... 229
19.2.3 Preconditioning ... 229
19.2.4 Subspace decomposition ... 230
19.2.5 Adaptive multiscale FWI .. 230
19.2.6 Estimation of the source wavelet ... 231
19.2.7 Ignoring amplitudes .. 231
19.3 Numerical tests .. 232
19.4 Summary .. 232
19.5 Exercises .. 233
19.6 Computational labs ... 234

Chapter 20: Wave-Equation Inversion of Skeletonized Data 235

20.1 Implicit function theorem ... 235
20.2 Examples of skeletonized inversion .. 236
 20.2.1 Wave-equation traveltime tomography ... 236
 20.2.2 Early-arrival waveform tomography .. 238
 20.2.3 Wave-equation inversion of surface waves ... 238
20.3 Alternative objective functions .. 244
20.4 Summary .. 246
20.5 Exercises .. 246
Appendix 20A: Gradient of the traveltime misfit function 248
Appendix 20B: Implementation of WT .. 250
 Forward modeling ... 250
 Backward propagation .. 250
 Direction of updating the model ... 250
 Calculation of the step length ... 251

Chapter 21: Acoustic Waveform Inversion: Case histories 253

21.1 Early-arrival waveform inversion applied to land data 253
 21.1.1 Data acquisition ... 253
 21.1.2 Data processing .. 254
 21.1.3 Estimating and correcting for Q .. 255
 21.1.4 EWT of the Wadi Qaudat data ... 256
 21.1.5 Synthetic data sanity test ... 257
 21.1.6 Key points ... 257
21.2 Acoustic FWI applied to Gulf of Mexico marine data 257
 21.2.1 Hybrid linear and nonlinear FWI .. 257
 21.2.2 Synthetic two-box model data ... 258
 21.2.3 Gulf of Mexico data .. 259
 21.2.4 Key points ... 263
21.3 Rolling-offset FWI .. 263
 21.3.1 Workflow for rolling-offset FWI .. 264
 21.3.2 Rolling-offset FWI: Synthetic data .. 266
 21.3.3 Rolling-offset FWI: 2D Gulf of Mexico data 267
 21.3.4 FWI with macro windows: 3D marine data 268
 21.3.5 Key points ... 269
21.4 Acoustic FWI applied to crosswell data .. 270
 21.4.1 Synthetic crosshole data ... 270
 21.4.2 Friendswood crosshole data .. 272
 21.4.3 Key points ... 273
21.5 Summary .. 275
Chapter 22: Elastic and Viscoelastic Full-Waveform Inversion .. 277

22.1 Elastic FWI .. 277
22.2 FWI of crosswell hydrophone records ... 278
 22.2.1 Acoustic FWI applied to acoustic synthetic data 279
 22.2.2 Elastic and viscoelastic FWI applied to synthetic viscoelastic data 281
22.3 FWI applied to McElroy crosswell data .. 281
 22.3.1 Data processing ... 282
 22.3.2 Elastic and viscoelastic waveform inversion .. 283
22.4 Summary .. 284
22.5 Exercises .. 284
Appendix 22A: Misfit gradient for λ .. 284
Appendix 22B: Source-wavelet inversion ... 285
Appendix 22C: Borehole pressure-field simulation ... 286
Appendix 22D: Estimation of Q_P and Q_S .. 287
Appendix 22E: Viscoelastic FWI gradient .. 288
Appendix 22F: Elastic FWI gradient .. 290

Chapter 23: Vertical Transverse Isotropy FWI .. 293

23.1 Theory .. 293
23.2 Numerical results .. 295
 23.2.1 Synthetic VSP data .. 295
 23.2.2 3D Gulf of Mexico data .. 296
23.3 Extension to TTI media .. 298
23.4 Summary ... 299
23.5 Exercises .. 299

Part VII: Image-Domain Inversion

Chapter 24: Classical Migration Velocity Analysis ... 303

24.1 Image-domain inversion ... 303
24.2 Classical ray-based MVA ... 303
24.3 Angle-domain CIGs .. 306
24.4 Trim statics MVA ... 307
24.5 Ray-based tomography .. 308
24.6 Summary .. 309

Chapter 25: Generalized Differential Semblance Optimization ... 311

25.1 Introduction ... 311
25.2 Theory of generalized differential semblance optimization 312
 25.2.1 Wave-equation traveltime and waveform inversion 312
 25.2.2 Differential semblance optimization ... 312
 25.2.3 Generalized differential semblance optimization 313
25.3 Numerical examples .. 316
25.4 Summary .. 318
25.5 Exercises .. 319
Appendix 25A: Migration images in the subsurface offset domain 320
Appendix 25B: H-DSO Fréchet derivative and gradient .. 320
Chapter 26: Generalized Image-Domain Inversion ..323
 26.1 Introduction ..323
 26.2 Theory of generalized image-domain inversion ..324
 26.2.1 Interpretation of the gradient functions ..325
 26.3 Numerical results ..326
 26.4 Summary ..330

References ..331

Index ..345
This page has been intentionally left blank
About the Author

Gerard Schuster is currently a professor of geophysics at King Abdullah University Science and Technology (KAUST) and an adjunct professor at University of Utah and University of Wyoming. He was the founder and director of the Utah Tomography and Modeling/Migration consortium from 1987 to 2009 and is now the co-director and founder of the Center for Fluid Modeling and Seismic Imaging at KAUST. Schuster helped pioneer seismic interferometry and its practical applications in applied geophysics through his active research program and through his extensive publications. He also has extensive experience in developing innovative migration and inversion methods for both exploration and earthquake seismology.

Schuster has an MS (1982) and a PhD (1984) from Columbia University and was a postdoctoral researcher there from 1984–1985. From 1985 to 2009, he was a professor of geophysics at University of Utah. He left Utah to start his current position as professor of geophysics at KAUST in 2009. He received a number of teaching and research awards while at University of Utah. He was editor of *Geophysics* 2004–2005 and was awarded SEG’s Virgil Kauffman Gold Medal in 2010 for his work in seismic interferometry. He was the SEG Distinguished Lecturer in 2013.
This page has been intentionally left blank
Preface

This book describes the theory and practice of inverting seismic data for the subsurface rock properties of the earth. The primary application is for inverting reflection and/or transmission data from engineering or exploration surveys, but the methods described also can be used for earthquake studies. I have written this book with the hope that it will be largely comprehensible to scientists and advanced students in engineering, earth sciences, and physics. It is desirable that the reader has some familiarity with certain aspects of numerical computation, such as finite-difference solutions to partial differential equations, numerical linear algebra, and the basic physics of wave propagation (e.g., Snell’s law and ray tracing). For those not familiar with the terminology and methods of seismic exploration, a brief introduction is provided in the Appendix of Chapter 1. Computational labs are provided for most of the chapters, and some field data labs are given as well.

MATLAB and Fortran labs at the end of some chapters are used to deepen the reader’s understanding of the concepts and their implementation. Such exercises are introduced early and geophysical applications are presented in every chapter. For the non-geophysicist, geophysical concepts are introduced with intuitive arguments, and their description by rigorous theory is deferred to later chapters.

The lab exercises in the Computational Toolkit can be found at http://csim.kaust.edu.sa/web/SeismicInversion and http://utam.gg.utah.edu/SeismicInversion/; the exercises can be accessed using the login Paulina and the password Brozina.
This page has been intentionally left blank
Acknowledgments

The author wishes to thank the long-term support provided by the sponsors of the Utah Tomography and Modeling/Migration consortium. Their continued financial support through both lean and bountiful years was necessary in bringing this book to fruition. Strong support was also provided by King Abdullah University of Science and Technology who financially supported me while writing the last ten chapters. I am very much indebted to the book editors Yonghe Sun and Ian Jones, as well as Chaiwoot Boonyasiriwat and Yunsong Huang for carefully editing every chapter in this book. Yonghe Sun’s suggestions for improving the book were invaluable. I also thank Susan Stamm at SEG for her diligent efforts in getting this book to press.

I also thank the following reviewers who provided very valuable edits: Abduhlrahman Alshuhail, Abdullah AlTheyab, Pawan Bharawadj, Chaiwoot Boonyasiriwat, Derrick Cerwinsky, Yuqing Chen, Wei Dai, Li Deng, Craig Douglas, Gaurav Dutta, Zongcai Feng, Shihang Feng, Bowen Guo, Sherif Hanafy, Libo Huang, Kai Lu, Veronika Pelletier, Mrinal Sinha, Ahmad Tarhini, Xin Wang, Han Yu, Ge Zhan, Zhendong Zhang, and Sanzong Zhang. The last two chapters on image-domain inversion are modified versions of Sanzong Zhang’s dissertation, and the description of the viscoacoustic gradient in Chapter 15 is a modified version of an appendix in Gaurav Dutta’s dissertation. The derivation of the VTI adjoint equations are from Mrinal Sinha and Bowen Guo. I also thank Yue Wang and Ken Bube for their derivation of the adjoint of the viscoelastic wave equation in Chapter 22. Bowen Guo also helped generalize the gradient equation for inverting trim statics with the wave equation. Zongcai Feng scrupulously checked the accuracy of the equations in Chapters 20 through 23.

Finally, many thanks go to the following people who generously donated their results or computer codes to this book: Abdullah AlTheyab, Chaiwoot Boonyasiriwat, Wei Dai, Gaurav Dutta, Yunsong Huang, Xin Wang, Han Yu, and Ge Zhan. Their diligent efforts have resulted in the many interesting labs and results discussed in this book.
This page has been intentionally left blank
Notation Convention

- \(\mathbb{R}^N \) denotes the \(N \)-dimensional real vector space.
- \(\mathbb{C}^N \) denotes the \(N \)-dimensional complex vector space.
- A column vector will be denoted by boldface lower-case letters. For example, \(\mathbf{x} = [x_1, x_2, \ldots, x_N]^T \) represents the \(N \times 1 \) vector where \(x_i \) is the \(i^{th} \) element of \(\mathbf{x} \).
- A matrix will be denoted by boldface upper-case letters. For example, \(\mathbf{A} \in \mathbb{R}^{M \times N} \) represents an \(M \times N \) real matrix whose \(i^{th} j^{th} \) element is denoted by \(A_{ij} \).
- An order-of-magnitude estimate of a variable whose precise value is unknown is an estimate rounded to the nearest power of ten.
- A scalar will be denoted by lower-case letters.
- Subscripts are usually used to denote the element index of a vector or matrix.
- Superscripts with parentheses are used to denote an iterate of a vector or matrix. For example, \(\mathbf{x}^{(k)} \) denotes the \(k^{th} \) iterate of an iterative scheme.
- \(\mathbf{x} \cdot \mathbf{y} = \mathbf{x}^T \mathbf{y} = \langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{N} x_i^* y_i \) represents a dot product or an inner product between finite-dimensional vectors \(\mathbf{x} \) and \(\mathbf{y} \).
- MATLAB syntax is sometimes used to represent vectors or matrices. For example, \([a \ b; c \ d] \) denotes the matrix
 \[
 \begin{bmatrix}
 a & b \\
 c & d
 \end{bmatrix}
 \]
- \(||\mathbf{x}||_1 \) denotes the 1-norm of the \(N \times 1 \) vector \(\mathbf{x} \) which is equal to
 \[
 ||\mathbf{x}||_1 = \sum_{i=1}^{N} |x_i|.
 \]
- \(|\mathbf{x}| = ||\mathbf{x}||_2 \) denotes the 2-norm or Euclidean norm of the \(N \times 1 \) vector \(\mathbf{x} \) which is equal to
 \[
 ||\mathbf{x}||_2 = \sqrt{\sum_{i=1}^{N} x_i^2}.
 \]

If the subscript is missing then the 2-norm is indicated, \(l_2 \) for a discrete vector and \(L_2 \) for a well-behaved function of a continuous variable.

- The length of a vector \(\mathbf{x} \) will often be denoted as \(|\mathbf{x}| \) rather than \(||\mathbf{x}||_2 \).
- \(||\mathbf{x}||_p \) denotes the \(p \)-norm or Euclidean norm of the \(N \times 1 \) vector \(\mathbf{x} \) which is equal to
 \[
 ||\mathbf{x}||_p = \left(\sum_{i=1}^{N} x_i^p \right)^{\frac{1}{p}}.
 \]
- \(\hat{\mathbf{x}} = \frac{\mathbf{x}}{|\mathbf{x}|} \) denotes the unit vector.
- \(\mathbf{A}^* \) denotes the complex conjugate of the matrix \(\mathbf{A} \).
- \(\mathbf{A}^T \) denotes the transpose of matrix \(\mathbf{A} \). We will often insist it also means the transpose and complex conjugated matrix \(\mathbf{A} \).
- \(\mathbf{A}^\dagger \) denotes the conjugated and transposed matrix \(\mathbf{A} \).
- \(\star \) denotes temporal convolution. For example, assuming \(f(t) \) and \(g(t) \) are real continuous functions of the scalar variable \(t \) and are square integrable then
 \[
 f(t) \star g(t) = \int_{-\infty}^{\infty} f(t - \tau) g(\tau) d\tau = \int_{-\infty}^{\infty} f(\tau) g(t + \tau) d\tau.
 \]
 (1)
- \(\otimes \) denotes temporal correlation. For example, assuming \(f(t) \) and \(g(t) \) are real continuous functions of the scalar variable \(t \) and are square integrable then
 \[
 f(t) \otimes g(t) = f(-t) \star g(t) = \int_{-\infty}^{\infty} f(\tau) g(t + \tau) d\tau.
 \]
 (2)
- \(\mathcal{F}[f(t)] = F(\omega) \) denotes the Fourier transform of \(f(t) \) and \(\mathcal{F}^{-1}[F(\omega)] \) is the inverse Fourier transform of \(F(\omega) \). For example,
 \[
 F(\omega) = \mathcal{F}[f(t)] = \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt,
 \]
 \[
 f(t) = \mathcal{F}^{-1}[F(\omega)] = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{i\omega t} d\omega,
 \]
 \[
 \frac{d^n f(t)}{dt^n} = \frac{1}{2\pi} \int_{-\infty}^{\infty} (i\omega)^n F(\omega) e^{i\omega t} d\omega,
 \]
 \[
 f(-t) = \mathcal{F}^{-1}[F(\omega)^*],
 \]
 \[
 \mathcal{F}[f(t) \star g(t)] = F(\omega) G(\omega),
 \]
\[F[f(t) \otimes g(t)] = F[f(-t) \star g(t)] = F(\omega)^* G(\omega), \]

\[f(t) \star g(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) G(\omega) e^{i\omega t} d\omega, \]

\[f(t) \otimes g(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega)^* G(\omega) e^{i\omega t} d\omega, \]

\[f(t) \otimes g(t)|_{t=0} = \int_{-\infty}^{\infty} f(\tau) g(\tau) d\tau \]
\[= \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega)^* G(\omega) d\omega, \]

\[f(t) \otimes f(t)|_{t=0} = \int_{-\infty}^{\infty} f(\tau)^2 d\tau \]
\[= \frac{1}{2\pi} \int_{-\infty}^{\infty} |F(\omega)|^2 d\omega. \]

(3)

- The Dirac delta function \(\delta(t) \) is a generalized function (Zemanian, 1965) that is zero everywhere on the real line, except at \(t = 0 \). The Dirac delta function has a broadband spectrum with the constant amplitude 1:

\[\delta(t-t') = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\omega(t-t')} d\omega. \]

(4)

For a smooth function \(f(\tau) \), the delta function has the sifting property:

\[f(t) = \int_{-\infty}^{\infty} f(\tau) \delta(\tau-t) d\tau. \]

(5)
Abbreviations

ABC absorbing boundary condition KM Kirchhoff migration
ADCIG angle-domain common image gather LSM least squares migration
CAG common angle gather LSRTM least squares reverse time migration
CFL Courant-Friedrichs-Lewy MD migration deconvolution
CG conjugate gradient MVA migration velocity analysis
CIG common image gather NLCG nonlinear conjugate gradient
CMG common midpoint gather NMO normal moveout
COG common offset gather PDE partial differential equation
CSG common shot gather PML perfectly matched layer
DFP Davidon-Fletcher-Powell PSTM prestack time migration
DM diffraction-stack migration QN quasi-Newton
DOD domain of dependence RTM reverse time migration
DSO differential semblance optimization SD steepest descent
EWT early arrival wave equation tomography SE spectral element
FD finite difference SLS standard linear solid
FE finite element SPD symmetric positive definite
FWI full waveform inversion SSP surface seismic profile
GCV generalized cross validation SV singular vector
GDM generalized diffraction-stack migration VSP vertical seismic profile
GDSO generalized differential semblance optimization WT wave equation traveltime tomography
GIDI generalized image domain inversion WTW wave equation traveltime and waveform tomography
GOM Gulf of Mexico ZO zero offset
IDI image domain inversion
This page has been intentionally left blank
References

Boonyasiriwat, C., 2007, Acoustic waveform inversion of 2D Gulf of
Mexico data: M.S. Thesis, University of Utah.

Briggs, W. L., 1987, A multigrid tutorial: SIAM.

de Fornel, F., 2001, Evanescent waves from Newtonian optics to atomic physics: Springer-Verlag.

References

Guo, B., 2015, Migration velocity analysis with trim statics: 2015 CSIM Annual Report, KAUST.

Morse, P. and H. Feshbach, 1953, Methods of theoretical physics: McGraw-Hill.

References

Downloaded 08/02/17 to 192.12.184.7. Redistribution subject to SEG license or copyright; see Terms of Use at http://library.seg.org/