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SUMMARY

Least-squares reverse-time migration (LSRTM) is a recently developed imaging algorithm, where the
image is produced using an iterative inversion process. Tests on synthetic and real data have shown the
promise that LSRTM can improve the image quality by balancing the reflector amplitudes, suppressing
migration artifacts and enhancing the image resolution. However, each iteration of the process is
comparable in computational cost to a conventional RTM and typically 10 to 20 iterations are required to
converge; thus the application of LSRTM has been limited. In this paper we incorporate statistical
sampling with LSRTM to reduce its computational cost. The empirical results suggest that this approach
reduces the cost of LSRTM to 2 or 3 times that of conventional RTM while retaining most of the quality
improvements.
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Introduction

Least-squares reverse time migration (LSRTM) has been shown to be able to improve image quality
over the conventional RTM method by balancing the reflector amplitudes and improving the image
resolution (Dai and Schuster 2013; Dai et al. 2013; Zhang et al. 2013). During the linear inversion
process, the LSRTM takes into account the Hessian matrix, which is usually approximated to be
diagonal in conventional migration, and to improve the image quality over iterations. One drawback
of LSRTM is that its computational cost is usually much higher than the conventional method.

Many authors (such as Schuster et al. 2011) have attempted to address the high computational cost by
shot-gather encoding: phase encoding (Romero et al. 2000), polarity encoding (Krebs et al. 2009),
time-dithering (Dai et al. 2012), random shot-location encoding (Boonyasiriwat and Schuster 2010),
plane-wave encoding (Vigh and Starr 2008; Dai and Schuster 2013) and frequency division (Dai et al.
2013). These techniques have also been applied previously to full waveform inversion (FWI) and
have achieved limited success.

The concept of statistical sampling was introduced to FWI by van Leeuwen and Herrmann (2012),
where a randomly chosen subset of the data (shots) can give an adequate estimate of the model update
for a much lower cost. In this paper, we apply statistical sampling with LSRTM to reduce its cost.

Theory

In LSRTM, a reflectivity model is sought to best fit the observed data with a linear Born modeling
operator by minimizing the misfit
f@m) =2llLm — d|’? (1)

where the L2 norm squared indicates summations over time, shots, and receivers. d is the recorded
data; L is the Born model modeling operator based on a given velocity model; and m is the
reflectivity model. Since the direct solver is prohibitively expensive, an iterative solver is usually
adopted, such as a steepest descent method

m&tD = m® — o[LT(Lm® — d)]. 2
We use a conjugate gradient method to minimize the misfit in equation (1).

With the constant-density acoustic wave equation, the Born modeling operator can be expressed as
1 9%p

T _ _wv2p —
S5~ VEP =5(t) ;
v2 9t2 Q_m

where P and Q are source and receiver side wavefields, v is the given velocity, and S(t) represents a
source function. Note that the source for the wavefield Q is the wavefield P scaled by the reflectivity
model m. The Q wavefield is recorded at receiver locations to give a synthetic dataset for comparison
against the observed data. The RTM operator LT in equation (2) is calculated as
(10%P
29z V2P = S(t)
1 029 ~
S -V =d - 4)
k m=3,PxQ
with a cross-correlation imaging condition. Note that during the numerical calculation of the equation
4, the source side wavefield P propagates forward in time but the receiver side wavefield Q
propagates backward in time. Solving the problem in equation (1) iteratively gradually improve the
image quality over the iterations.

The conventional approach is to include all the shots (in a particular geographic region) of the survey
in the sum. With statistical sampling algorithm, only a subset of the shots is included at every iteration
to reduce the computational cost.

76" EAGE Conference & Exhibition 2014
Amsterdam RAI, The Netherlands, 16-19 June 2014



9
Amsterdam 14

Examples

The LSRTM algorithm was tested with part of the 3D SEAM model (Day et al. 2009). The synthetic
data were generated with narrow azimuth acquisition geometry. There were a total of 4800 shots
distributed along 20 source lines with 400-m cross-line (YY) spacing and 100-m in-line (X) spacing.
Each shot was recorded with a towed streamer array consisting of 11 cables with 200-m spacing and
each cable had101 receivers with an interval of 100 m. The synthetic data were calculated with
variable-density isotropic wave equation and the true velocity and density model shown in Figure 1. A
Ricker wavelet with 10 Hz maximum frequency was used as the source wavelet.

(a) The Velocity Model (b) The Density Model
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Figure 1: The SEAM velocity model (a) and density model (b) were truncated to the portion covering
the SEG logo in the density model.

The Smooth Velocity Model
17500

Figure 2: The smooth velocity model for
migration obtained by 3D Gaussian
smoothing of the true slowness model
with a 500-m window.
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The data were migrated with the smooth velocity model in Figure 2 and constant density; an in-line
section and a depth slice of the RTM image are shown in Figures 3a and 3b, with the same slices as
Figure 1. Figures 3c and 3d shows the LRTM image after 10 iterations. In the in-line section, the
overall amplitudes are balanced and the illumination of the subsalt part is improved. In the shallow
part, the resolution of the horizontal reflectors is enhanced. Figures 4a and 4b plot the zoom views of
the subsalt sections, where the LSRTM image delineates the syncline better than the RTM image
does. In the depth slices, the SEG logo is resolved better in the LSRTM image with more balanced
amplitudes and better resolution. If we assume each iteration of LSRTM needs twice the cost of RTM,
the cost of LSRTM image is 20 times that of RTM.

To test the feasibility of the statistical sampling algorithm, the same data are migrated again with
LSRTM, but at each iteration only about 8% of the shots are used. The shots are selected randomly
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Figure 3: The in-line and depth sections of RTM and LSRTM images: (a) the in-line section
(y=21.3km) of the RTM image; (b) the depth slice (z=14.3km) of the RTM image. Panels (c) and (d)
show the same slices of LSRTM image after 10 iterations and panels (e) and (f) show the same slices
of LSRTM image with statistical sampling after 15 iterations.
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Figure 4: Zoom views of the subsalt sections in Figures 3a, 3¢ and 3e.The reflector in the yellow
ellipse is better resolved in the LSRTM images (panels (b) and (c)). Panel (d) shows the true
reflectivity.
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and changed at every iteration. Two slices of the image after 15 iterations are shown in Figures 3e and
3f, which are similar to Figures 3c and 3d, but their cost is only about 2.4 times that of RTM. The
zoom view in Figure 4c also shows similar quality to Figure 4b. Figure 4d shows the true reflectivity
as the benchmark.

Conclusions

LSRTM can improve the image quality by taking into account limited acquisition aperture, source
wavelet, geometric spreading, etc. However, its application is limited due to high computational cost.
In this paper, we propose to combine LSRTM with statistical sampling to reduce the computational
cost. The proposed method is tested with a dataset of 3D SEAM model. With 2.4 times the cost of
RTM, LSRTM with statistical sampling can produce an image showing similar quality improvements
of full LSRTM, compared to a conventional RTM image. With better efficiency, the LSRTM with
statistical sampling can be applied to realistic 3D dataset to produce better images over RTM.
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